

Development Of Computational Tools For Analysis And Evaluation Of Autonomous Parafoil Systems

Esteban Gonzalez Garcia, Carlos G. Sacco,

Aula CIMNE IUA

Enrique Ortega, Roberto Flores,

CIMNE Barcelona

2do Congreso Argentino de Ingeniería Aeronáutica

November 25th, 2010 Instituto Universitario Aeronáutico Córdoba - Argentina

Outline

- CIMNE Overview
- Introduction
- Aerodynamic model
- Structural model
- Coupling procedure
- 6-DoF Simulation model
- Trajectory example
- Conclusions

CIMNE: Fact and Figure

CIMNE is a consortium of Generalitat de Catalunya and UPC founded in 1987.

Today is a recognized institution with a growing international presence and strong experience in several research areas with a professional staff of researches.

CIMNE offer upstream research capabilities, transfer technology competence, industrial innovation partnerships and customized investigation programs.

Following are some figure:

STAFF: up to 200 people (150 researchers)

PROJECTS: up to 100 ongoing projects (EU, national, regional and international and

industrial cooperation agreements)

PUBLICATIONS: 101 books, 156 technical reports, up to 800 scientific works.

CONGRESS: up to 80 national and international congresses

TRAINING: up to 370 course and seminars

LOCATIONS: Barcelona, Madrid, Castelldefels, Terrassa, Washington, Singapore

CIMNE-CASTELLDEFELS

Parachute simulation at CIMNE: Antecedents

- The role of parachutes in many civil, humanitarian and military applications call for new and improved computational tools to meet the current need of software applications in the field.
- The development of simulation tools for the analysis of parachute systems begins in 2005 at CIMNE in cooperation with **CIMSA Ingeniería en Sistemas**, a leading parachute designer and manufacturer (www.cimsa.com).
- Initial joint efforts developed **PARACIMSA**, a simulation code for coupled aerodynamic-structural analysis of ram-air parachutes. Its main features are:
 - > Stationary low-order panel method + implicit finite element based code for membranes and cables.
 - ➤ Capabilities: prediction of **stationary aerodynamic characteristics.** Simulation of maneuvers and reefing. Simplified parachute inflation model.

Latest advances in parachute simulation

- Relaying on PARACIMSA experience, a new analysis code named PARACHUTES was recently developed in order to accomplish transient coupled analysis while improving modularity, expandability, robustness and computational efficiency.
- The aerodynamic model is based on an unsteady low-order panel method.
 The structural solver is a dynamic (explicit) finite element based code. The
 new structural code also allows simulation of the complete parachute-payload
 system dynamics.
- A set of tools including a **6 DoF parachute flight simulator** (ParaSim6) was also developed for trajectory analysis and design of guidance, navigation and control systems (GNC) with minimum computational cost. The simulator is based on a **parametric model** (aerodynamic derivatives).

PARACHUTES: Aerodynamic model

- Unsteady three-dimensional potential flow model.
- Low-order panel method (constant-strength doublet and source panels)
- Body discretization → thick / thin surface boundaries, triangular / quadrilateral panels, structured / unstructured grids.
- Lifting and non-lifting bodies having solid or permeable surface boundaries (transpiration).
- Multiple body analysis.
- Time-marching wake model.
- Wind loads are applied to parachute suspension lines, which are considered long cylinders exposed to the wind.

Unsteady numerical applications

y z

Impulsive starting wing

Hovering rotor (Ω =650 rpm)

PARACHUTES: Structural model

- Explicit dynamic analysis:
 - ✓ No convergence issues in highly non-linear problems, e.g., large displacements and deformations, complex material behavior, etc.
 - ✓ Suitable for calculating transient (dynamic) as well as longterm (static) response.
 - ✓ Easily vectorized (efficient in parallel environments).
- Three-node linear membrane elements.
- Two-node linear cable elements.
- Includes wrinkling model.
- Rayleigh damping and bulk viscosity for noise control.

Large displacement & wrinkling capability

PARACHUTES: Coupling procedure

- A 2-way coupling between the aerodynamic (A) and structural (S) models is adopted.
- The A/S models share the same mesh. If quadrilateral elements are present, they are converted into triangles when solving the structure.
- As the stability limit of the structural solver is small, several structural iterations are performed for each aerodynamic time step.
- Convergence to the steady state regime can be accelerated by using an under-relaxation technique when transferring aerodynamic loads to the structure.
- For long-term response analysis (e.g. trajectory analysis) the number of structural steps can be reduced by approximating the behavior of the membrane as quasi-static (i.e. considering only discrete states of equilibrium along the flight path).

Dynamic structural behavior

Application example 1 - Fastwing

- Large ram-air parachute designed and manufactured by CIMSA within the FASTWing project framework.
- Target design: high wing loads and glide ratios.
- Payloads up to 3.5 tons.

Benolol, S. and Zapirain, F. The fastwing project, parafoil development and manufacturing. 18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. AIAA paper 2005-1639, 2005

 V_{∞} = 24 m/s Equilibrium angle of descent ~ -15°

Fastwing stationary results (under-relaxation is applied)

Turn-right maneuver

Application example 2 - Manoeuvring

- CIMSA personal parachute.
- Payload 120 Kg.

PARACHUTES: Graphical User Interface (GUI)

- Graphical user interface developed on the basis of the in-house pre and postprocessor GiD (www.gidhome.com).
- Creation and manipulation of complex CAD geometries.
- Customized window menus for the application of boundary conditions and the definition of the simulation parameters.

- All the necessary tools for generating structured and non-structured meshes in complex geometries are provided.
- Specific templates for the automatic generation of code input files.
- Wide range of possibilities for the analysis and visualization of the numerical results.

PARASIM6: An overview

- ParaSim6 is a tool set for designing and analyzing precision delivery systems.
- A parametric 6 DoF parafoil-payload (rigid) model provides fast simulations for multiple configurations / scenarios. Independent left / right brake inputs for lateral control and variable incidence angle for longitudinal control.
- The trajectory calculation module accounts for:

Parafoil aerodynamics (derivatives based model), inertia, apparent mass, etc.

Wind conditions and atmosphere model.

Payload weight, drop altitude, airspeed and heading.

- Aerodynamic parameters estimation through experimental data or numerical simulation (current approach ⇒ unsteady panel code + FEM model for the structure).
- Modular Guidance Navigation and Control (GNC) subroutine for user-defined algorithms.

PARASIM6: The 6-DoF model

- Parafoil-payload load system considered a single rigid body with 6 degrees of freedom
- Aerodynamic model based on derivatives
- Apparent mass model based on Barrows
- Variable incidence angle for longitudinal (glide slope) control
- Standard atmosphere and wind input capability
- Guidance, Navigation and Control (GNC) algorithm
 - Lateral Control Strategy implemented similar to PID navigation of the Aerosonde UAV
 - Altitude Control Strategy deals with potential energy management

PARASIM6: Lateral control strategy

PARASIM6: Trajectory example

Conclusions

- A set of computational tools for aerodynamics, structures and flight mechanics
 of parachutes have been developed. These tools are useful from early design
 to operational stages of parachutes.
- Fast simulations for trajectory estimation or control algorithm development can be made through ParaSim6 (6 DoF)
- Detailed aerodynamics, derivatives estimation and maneuver analysis can be made through the coupled solver PARACHUTES.

Ongoing and Future work

- Study of parachute deployment and inflation (semi-empirical models). Analysis of vortex methods for simulating flow separation (intended for circular canopies)
- Improved reefing strategies (sliding cables and contact algorithms).
- Improvements to the parachute flight simulator capabilities: Automatic aerodynamic parameters estimation subroutine (based on PARACHUTE code) and Monte-Carlo simulations for sensitivity analysis

Development Of Computational Tools For Analysis And Evaluation Of Autonomous Parafoil Systems

Gonzalez E., Sacco C., Ortega E., Flores R.

Contact: Javier Piazzese, email: piazzese@cimne.upc.edu