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Kirchhoff Saint-Venant material model 
 

Isotropic linear elasticity can be derived from balance of linear momentum, the linearized strain 

displacement relation 𝜺 =
1

2
(∇𝒖 + ∇𝒖𝑇) and the stored elastic energy function 

𝑊(𝜺) =
𝜆

2
(tr 𝜺)2 + 𝜇 tr(𝜺2) =

𝜆

2
(𝜀𝑖𝑖

2) + 𝜇 𝜀𝑗𝑘𝜀𝑗𝑘 

1. Check that, the stress tensor obtained form 𝝈 = 𝜕𝑊/𝜕𝜀  agrees with the usual linear elasticity 

expression. 

The stress is calculated as follows: 

𝜎𝑖𝑗 =
𝜕𝑊

𝜕𝜀𝑖𝑗
=

𝜕

𝜕𝜀𝑖𝑗
(
𝜆

2
(𝜀𝑖𝑖

2) + 𝜇 𝜀𝑗𝑘𝜀𝑗𝑘) =
𝜆

2
· 2𝜀𝑖𝑖𝛿𝑖𝑗 + 2𝜇𝜀𝑗𝑘𝛿𝑖𝑗𝛿𝑗𝑘 = 𝜆𝜀𝑖𝑖𝛿𝑖𝑗 + 2𝜇𝜀𝑖𝑗 

𝝈 =
𝜕𝑊

𝜕𝜺
= 𝜆 tr 𝜀 𝑰 + 2𝜇𝜺 

Since the linearization of the Green-Lagrange strain tensor 𝑬 =
1

2
(𝑪 − 𝑰) is the small strain tensor 𝜺, 

it is natural to extend isotropic elasticity to nonlinear elasticity as 

𝑊(𝑬) =
𝜆

2
(tr 𝑬)2 + 𝜇 tr(𝑬2). 

This hyperelastic model is called Kirchhoff Saint-Venant material model. 

2. According to the definition we gave in class about isotropy in nonlinear elasticity, is this model 

isotropic? 

First, the energy function is expressed in terms of the deformation gradient 𝑭: 

𝑊(𝑭) =
𝜆

2
(
1

2
 tr(𝑭𝑇𝑭 − 𝑰))

2

+ 𝜇 tr (
1

4
(𝑭𝑇𝑭 − 𝑰)2) 

Given an arbitrary rotation matrix 𝑸 ∈ 𝑆𝑂(3). 

𝑊(𝑭𝑸) =
𝜆

2
(
1

2
 tr((𝑭𝑸)𝑇𝑭𝑸 − 𝑰))

2

+ 𝜇 tr (
1

4
((𝑭𝑸)𝑇𝑭𝑸 − 𝑰)2) = 

𝜆

2
(
1

2
 tr((𝑭𝑸)𝑇𝑭𝑸 − 𝑰))

2

+ 𝜇 tr (
1

4
((𝑭𝑸)𝑇𝑭𝑸(𝑭𝑸)𝑇𝑭𝑸 − 2(𝑭𝑸)𝑇𝑭𝑸 + 𝑰)2) 

We will use the property of the trace of a matrix multiplication: 

tr(𝑨𝑇𝑩) = tr(𝑨𝑩𝑇) 



Applying it to the previous expression along with the fact that the trace is a linear operator: 

𝑊(𝑭𝑸) =
𝜆

8
( tr(𝑭𝑸(𝑭𝑸)𝑇) − tr(𝑰)))

2
+

𝜇

4
 (tr((𝑭𝑸)𝑇𝑭𝑸𝑸𝑇𝑭𝑇𝑭𝑸) − 2 tr(𝑭𝑸(𝑭𝑸)𝑇) + tr(𝑰)) = 

𝜆

8
( tr(𝑭𝑸𝑸𝑇𝑭𝑇) − tr(𝑰)))

2
+

𝜇

4
 (tr(𝑸𝑇𝑭𝑇𝑭𝑭𝑇𝑭𝑸) − 2 tr(𝑭𝑸𝑸𝑇𝑭𝑇) + tr(𝑰)) = 

𝜆

8
( tr(𝑭𝑭𝑇) − tr(𝑰)))

2
+

𝜇

4
 (tr((𝑭𝑇𝑭𝑸)𝑇𝑭𝑇𝑭𝑸) − 2 tr(𝑭𝑭𝑇) + tr(𝑰)) = 

𝜆

8
( tr(𝑭𝑭𝑇) − tr(𝑰)))

2
+

𝜇

4
 (tr(𝑭𝑇𝑭𝑸(𝑭𝑇𝑭𝑸)𝑇) − 2 tr(𝑭𝑭𝑇) + tr(𝑰)) = 

𝜆

8
( tr(𝑭𝑭𝑇) − tr(𝑰)))

2
+

𝜇

4
 (tr(𝑭𝑇𝑭𝑸𝑸𝑇𝑭𝑇𝑭) − 2 tr(𝑭𝑭𝑇) + tr(𝑰)) = 

𝜆

8
( tr(𝑭𝑭𝑇) − tr(𝑰)))

2
+

𝜇

4
 (tr(𝑭𝑇𝑭𝑭𝑇𝑭) − 2 tr(𝑭𝑭𝑇) + tr(𝑰)) = 

𝜆

2
(
1

2
 tr(𝑭𝑇𝑭 − 𝑰))

2

+ 𝜇 tr (
1

4
(𝑭𝑇𝑭 − 𝑰)2) = 𝑊(𝑭) 

 

So we have proved that the model is isotropic. 

3. Derive the second Piola-Kirchhoff stress 𝑺. 

The second Piola Kirchhoff stress is calculated as follows: 

𝑆𝐼𝐽 =
𝜕𝑊

𝜕𝐸𝐼𝐽
=

𝜕

𝜕𝐸𝐼𝐽
(
𝜆

2
(𝐸𝐼𝐼)

2 + 𝜇𝐸𝐽𝐾𝐸𝐽𝐾) = 𝜆𝐸𝐼𝐼𝛿𝐼𝐽 + 2𝜇𝐸𝐽𝐾𝛿𝐼𝐽𝛿𝐽𝐾 = 𝜆𝐸𝐼𝐼𝛿𝐼𝐽 + 2𝜇𝐸𝐼𝐽  

𝑺 = 𝜆 tr(𝑬)𝑰 + 2𝜇𝑬 

4. For a uniform deformation of a rod aligned with the 𝑋 axis (𝑥 = Λ𝑋, 𝑦 = 𝑌, 𝑧 = 𝑍, where Λ >

0 is the stretch ratio along the X direction) derive the relation between the nominal stress 𝑃 

(the 𝑥𝑋 component of the first Piola-Kirchhoff stress) and the stretch ratio Λ,𝑃(Λ), and plot 

it. 

The deformation map is: 

[
𝑥
𝑦
𝑧
] = [

Λ𝑋
𝑌
𝑍

] 

This implies: 

𝑭 =
𝜕𝜑

𝜕𝑿
= [

Λ 0 0
0 1 0
0 0 1

] , 𝑪 = 𝑭𝑇𝑭 = [
Λ2 0 0
0 1 0
0 0 1

] , 𝑬 =
1

2
(𝑪 − 𝑰) = [

1

2
(Λ2 − 1) 0 0

0 0 0
0 0 0

] 



𝑺 = 𝜆 tr(𝑬)𝑰 + 2𝜇𝑬 =

[
 
 
 
 
 (Λ2 − 1) (

𝜆

2
+ 𝜇) 0 0

0
𝜆

2
(Λ2 − 1) 0

0 0
𝜆

2
(Λ2 − 1)

]
 
 
 
 
 

 

𝑷 = 𝑭𝑺 =

[
 
 
 
 
 Λ(Λ2 − 1) (

𝜆

2
+ 𝜇) 0 0

0
𝜆

2
(Λ2 − 1) 0

0 0
𝜆

2
(Λ2 − 1)

]
 
 
 
 
 

 

𝑃𝑥𝑋 = Λ(Λ2 − 1) (
𝜆

2
+ 𝜇) 

This last result has been plotted: 

 

Figure 1: Stress 𝑃𝑥𝑋 vs Λ 

  



5. Is the relation 𝑃(Λ) monotonic? If not, derive the critical stretch Λ𝑐𝑟𝑖𝑡 at which the model fails 

with zero stiffness. Does this critical stretch depend on the elastic constants? Show that the 

material does not satisfy the growth conditions 

𝑊(𝑬) ⟶ +∞ when 𝐽 ⟶ 0+. 

From the previous plot it is seen that the relation is not monotonic: 

𝜕𝑃𝑥𝑋

𝜕Λ
(Λ𝑐𝑟𝑖𝑡) = (

𝜆

2
+ 𝜇) (3Λ2 − 1) = 0 → 3Λ𝑐𝑟𝑖𝑡

2 − 1 = 0 → Λ𝑐𝑟𝑖𝑡 = √
1

3
 

This is physically inconsistent as this means that over some point, the material However, the value of 

Λ𝑐𝑟𝑖𝑡 is independent of the elastic constants. 

The determinant of the deformation is: 

𝐽 = |𝑭| = Λ 

It is trivial to show that: 

lim
Λ→0

𝑊(𝑬)  = 0 

So the growth condition is not satisfied. This means that the material could be compressed to the limit 

of occupying a null volume with a finite amount of energy and that is physically inconsistent. 

 

6. Consider now the modified Kirchhoff Saint-Venant material model: 

𝑊(𝑬) =
𝜆

2
(ln 𝐽)2 + 𝜇 tr(𝑬2) 

Does this model circumvent the drawbacks of the previous model? 

To compute the second Piola-Kirchhoff stress tensor first, the derivative 𝜕𝐽 𝜕𝑬⁄  is computed: 

𝜕𝐽

𝜕𝐸𝐼𝐽
=

𝜕|𝐹|

𝜕𝐹𝑘𝐿

𝜕𝐹𝑘𝐿

𝜕𝐸𝐼𝐽
= |𝐹|𝐹𝑘𝐿

−𝑇 (
𝜕𝐸𝐼𝐽

𝜕𝐹𝑘𝐿
)

−1

= 𝐽𝐹𝑘𝐿
−𝑇 (

1

2

𝜕(𝐹𝑚𝐼𝐹𝑚𝐽 − 𝛿𝐼𝐽)

𝜕𝐹𝑘𝐿
)

−1

= 

2𝐽𝐹𝑘𝐿
−𝑇(𝐹𝑚𝐽𝛿𝑚𝑘𝛿𝐼𝐿 + 𝐹𝑚𝐼𝛿𝑚𝑘𝛿𝐽𝐿)

−1
= 2𝐽𝐹𝑘𝐿

−𝑇(𝐹𝑘𝐽𝛿𝐼𝐽 + 𝐹𝑘𝐼𝛿𝐽𝐿)
−1

= 

2𝐽(𝐹𝑘𝐽𝐹𝑘𝐼 + 𝐹𝑘𝐼𝐹𝑘𝐽)
−1

= 2𝐽(2𝐹𝑘𝐼𝐹𝑘𝐽)
−1

= 𝐽(𝐹𝑘𝐼𝐹𝑘𝐽)
−1

 

𝜕𝐽

𝜕𝑬
= 𝐽(𝑭𝑇𝑭) = 𝐽𝑪 = 𝐽(2𝑬 + 𝑰) 

 

This means that the second Piola-Kirchhoff stress tensor is: 

𝑺 =
𝜕𝑊

𝜕𝑬
=

𝜆

2
· 2 ln(𝐽)

𝜕𝐽

𝜕𝑬
+ 2𝜇𝑬 = 𝜆 ln 𝐽 · 𝐽(2𝑬 + 𝑰)−1 + 2𝜇𝑬  

  



For the deformation case of the last section: 

𝑆𝑥𝑋 = 𝜆(ln Λ)Λ(Λ2)−1 + 𝜇(Λ2 − 1), 𝑃𝑥𝑋 = Λ(𝜆(lnΛ)Λ−1 + 𝜇(Λ2 − 1)) = 𝜆 lnΛ + 𝜇(Λ3 − Λ) 

In this case, it can be seen that the stress is monotonic under the condition that 
𝜇

𝜆
<

9

2
 

 

Figure 2: Stress 𝑃𝑥𝑋 vs Λ 

In any case, the logarithmic term guarantees the growth condition as 

lim
Λ→0

𝑊(𝑬) = −∞ 

So, we can conclude that this model is physical consistent given the condition 
𝜇

𝜆
<

9

2
 so it circumvents 

the drawbacks of the previous one. 


