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1 Kirchhoff Saint-Venant material model :

1.1 Verification of Stress tensor:

From the given data, we know that stored elastic energy function is,

W (ε) =
λ

2
(trε)2 + µtr(ε2) =

λ

2
(εii)

2 + µεjkεjk (1)

And now we need to verify that the stress tensor obtained from σ = ∂W/∂ε agrees with usual linear
elasticity expression. Hence we are differentiating equation(1) with respect to ε and we obtain,

σ = ∂W/∂ε

σ =
∂(λ2 εiiεii + µεjkεjk)

∂εlm
=
λ

2

∂(εiiεii)

∂εlm
+ µ

∂(εjkεjk)

∂εlm

σ =
λ

2

[
εii∂εii
∂εlm

+
εii∂εii
∂εlm

]
+ µ

[
εjk∂εjk
∂εlm

+
εjk∂εjk
∂εlm

]

=⇒ σ =
λ

2
[εiiδliδmi + εiiδliδmi] + µ[εjkδljδmk + εjkδljδmk]

σlm = λεiiδlm + 2µεlm

Or we can also write as,

σ = λtr(ε)I + 2µε (2)

Hence as we can see that arriving at equation(2), we verified that the stress tensor obtained from
σ = ∂W/∂ε agrees with usual linear elasticity expression.

1.2 Verification of Isotropicity:

From the lecture notes we know that relation between 2nd Piola-Kirchoff stress tensor and Cauchy stress
tensor C is given as,

S = 2
∂W

∂C
=
∂W

∂E
(3)
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We also know that material can be isotropic only if the strain energy function W depends only on the
principal invariants of C. And we also know that any strain energy function can be written in terms of the
principal invariants of C as,

W (C) = W (I1(C), I2(C), I3(C))

I1(C) = trace(C) = Cii = λ21 + λ22 + λ23

I2(C) =
1

2

[
(traceC)2 − trace(C2)

]
=

1

2

[
CikCki − C2

jj

]
= λ21λ

2
2 + λ22λ

2
3 + λ23λ

2
1

I3(C) = det(C) = λ21λ
2
2λ

2
3

Lets assume the material as Isotropic and hence we write the energy equation purely in terms of function
of principal invariants of C i.e differentiating W with respect to C,

∂W

∂C
=
∂W

∂I1
× ∂I1
∂C

+
∂W

∂I2
× ∂I2
∂C

+
∂W

∂I3
× ∂I3
∂C

=⇒ ∂W

∂C
= c1 × I + c2(I2(CI−CT )) + c3 × I3(C)C−T

After grouping the terms,

∂W

∂C
= m0I +m1C

T +m2C
−T (4)

We know from theorem given in lecture notes that C−1 is written as function of C2,C and I. Imposing
this in equation(4) we obtain,

∂W

∂C
= m0I +m1C +m2C

2 (5)

But we know that formula for PK-2 stress tensor(S) can be yielded from above equation(5) as,

S = 2
∂W

∂C
= 2(m0I +m1C +m2C

2) (6)

We know that the Cauchy stress tensor can also be written as,

σ = 2ρ(s1I + s2B + s3B
2) (7)

Where B is a Right Cauchy-Green deformation tensor. And now from equations (6) and (7) we can
observe that both are similar and are derived by assuming material is isotropic prior. Hence we can
conclude that material is isotropic and our assumptions is correct.

1.3 Derivation of Second Piola-Kirchhoff stress (S):

From the given data of assignment part(1) we have that after linearization, the hyperelastic model for
Kirchoff Saint-Venant material model is given by,

W (E) =
λ

2
(trE)2 + µtr(E2) (8)

We know that S is defined as,

S =
∂W

∂E
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Therefore after differentiating the above equation, we obtain

S =
∂W

∂E
=
λ

�2
�2tr(E)1 + 2µE

Hence we obtain the Second Piola-Kirchhoff stress tensor(S) as,

S = λtr(E)1 + 2µE (9)

1.4 Relation between nominal stress(P ) and stretch ratio(Λ) :

We have from the given data for uniform deformation of rod aligned with X-axis, spatial description
equations as x = ΛX, y = Y , z = Z and Λ > 0 is the stretch ratio along X-direction. And we know that
nominal normal stress P is given by,

P = FS

Where F is Deformation gradient ,

F =

 Λ 0 0
0 1 0
0 0 1

 .
And S is second Piola-Kirchhoff stress tensor,

S = λtr(E)1 + 2µE

But the Green Lagrange strain tensor E is given as,

E =
1

2
(C− I) (10)

Where C=FTF. And hence we obtain C as,

C =

 Λ2 0 0
0 1 0
0 0 1

 .
Therefore substituting C in equation(10), we obtain

E =
1

2

 Λ2 − 1 0 0
0 0 0
0 0 0

 .

S =
λ

2
(Λ2 − 1)

 1 0 0
0 1 0
0 0 1

+ µ

 Λ2 − 1 0 0
0 0 0
0 0 0



S =
1

2

 (Λ2 − 1)(λ+ µ) 0 0
0 λ(Λ2 − 1) 0
0 0 λ(Λ2 − 1)


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Therefore P now becomes,

P = FS =
1

2

 Λ 0 0
0 1 0
0 0 1

 (Λ2 − 1)(λ+ µ) 0 0
0 λ(Λ2 − 1) 0
0 0 λ(Λ2 − 1)



P =
Λ(Λ2 − 1)

2

 (λ+ µ) 0 0
0 λ 0
0 0 λ

 .
The first term of Nominal stress is given by,

P =
Λ(Λ2 − 1)

2
(λ+ µ) (11)

From the above equation(11), we can see the derived relation between the nominal stress P (xX com-
ponent of the first Piola-Kirchhoff stress) and the stretch ratio Λ. And the Plot in Figure(1) below refers
to comparison made with nominal stress(P) versus stretch factor (Λ).

Figure 1: Plot of nominal stress (P) with stretch factor (Λ)

1.5 Verifying whether relation P (Λ) is monotonic or not :

We can say that P (Λ) is not monotonic as it fails at Λ = ±1. And we can derive the critical stretch value
by differentiating the equation(11) w.r.t Λ i.e.,

∂P

∂Λ
=

∂

∂Λ

(
Λ(Λ2 − 1)

2
(λ+ µ)

)

=⇒ ∂P

∂Λ
=

3Λ2 − 1

2
(λ+ µ) (12)
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Hence after equating the above equation(12) to 0, we obtain critical stretch(Λcrit) at which model fails
with zero stiffness as,

Λcrit =
1√
3

Hence we can conclude that critical stiffness does not depend on any elastic constants. And now to
show that the material does not satisfy the growth conditions i.e., W (E) → +∞ when J → 0+, first lets
substitute value of trace(E) in equation(8) which yields,

W (E) =
λ

2

(Λ2 − 1

2

)2
+ µ

(Λ2 − 1)2

4
(13)

Hence from the above equation(13), we can observe that by using Jacobian (J equals to Λ) when tends
to 0+, W does not tend to ∞. Hence the material does not satisfy the growth conditions.

1.6 Modified Kirchhoff Saint-Venant material model :

From the given data, the modified Kirchhoff Saint-Venant material model given as,

W (E) =
λ

2
(lnJ)2 + µtr(E2) (14)

After substituting values of J and tr(E2) in the above equation we can write it as,

W (E) =
λ

2
(lnΛ)2 + µ

(Λ2 − 1

2

)
(15)

Here we can observe from the above equation(15), when the Jacobian (J equals to Λ) tends to 0+

(lnΛ2) increases to larger value, and hence W (E) → +∞. Therefore we can conclude that this modified
model overcomes the drawback of previous model by satisfying the growth conditions.

1.7 Implementation of new material model :

The implementation of this material model(Kirchhoff Saint-Venant material model) in the MATLAB sub-
routine is shown in the Appendix 1. The consistency test was performed by using the MATLAB Subroutine
’Check Derivatives.m’. The code was working fine as expected and we performed consistency test on
two examples : ’Upsetting of the block, dead load’ and ’Compression of a slender beam, dead load’. Both
the examples passed the consistency test giving very less relative errors of ’gradient’ and ’hessian’ with the
Kirchhoff Saint-Venant material model, thus verifying that our implementation is correct. Below Figures
(2) and (3) shows the plots of two examples which was taken for verifying the consistency test for the new
material model.

In order to explain the material instabilities that was caused by this model we took the example of
’Upsetting of a block, imposed displacements’ as numerical example. To show the material instabilities,
first we have fixed all the dof’s along ’y’ to 0, so that no geometrical instabilities will occur. And also it
is to be noted that since no perturbations are given, so buckling does not happen and hence geometric
instabilities does not occur . We also verified that the relation P (Λ) is not monotonic (see section 1.5) and
once the critical stretch is reached, the stress begins to decrease and this exhibits the softening behavior.
This produces an unstable state because when loading beyond the critical stretch, a small increment in
stress will produce a non-linear change in the stretch increment. We can observe from below Figure (4)
that beyond a particular point there is a large increase in deformation while the force remains constant.
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Figure 2: Upsetting of the block, dead load after
passing consistency test .

Figure 3: Compression of slender beam, dead
load after passing consistency test

Figure 4: Force v/s displacement curve showing the Material instability.

2 Implementation of Line-search. :

The line search method first finds a descent direction along which the objective function ’f’ will be reduced
and then computes a step size that determines how far ’x’ should move along that direction. The descent
direction can be computed by various methods, such as gradient descent, Newton’s method and Quasi-
Newton method. The step size can be determined either exactly or inexactly.

2.1 Testing of Line search

The test was carried out for example 4(’arch, dead load at center of the arch’). The results obtained
using normal Newton-Raphson’s method were diverging when the buckling starts. It can be seen in
the Figures (5) and (6) below. This problem can be optimized by implementing Newton-Raphson with
Linesearch and the results obtained are stable and converging which can be seen below in Figures (7) and
(8), but iterations at the time of buckling was very large. The implementation of this method in MATLAB
subroutine ’Equilibrate.m’ is shown in the Appendix 2.
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i) Implementation of Newton-Raphson for ’example.4’ without Line-search :

Figure 5: Force v/s Displacement Figure 6: Error Plot

ii) Implementation of Newton-Raphson for ’example.4’ with Line-search :

Figure 7: Force v/s Displacement Figure 8: Solution plot

3 Implementation of new material model(Transversely isotropic mate-
rial model) :

3.1 Implementation of new material model :

Given model whose strain energy density (or hyper-elastic potential) is:

W (C) =
1

2
µ(trace(C− 3)− µlnJ + κG(J) + c0

{
exp

[
c1(
√

(I4(C)− 1)4
]
− 1

}

where µ,κ, c0 and c1 are material parameters, and G(J) provides the volumetric response of the material.

G(J) =
1

4
(J2 − 1− 2lnJ)
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Such a model depends on the principal invariants of C and additionally by the fourth invariant which
is given by,

I4(C) = Nfib ·C ·Nfib = CijN
fib
i Nfib

j

Where Nfib is a unit vector which gives the orientation of fibers in the reference configuration.

As per the given question we have implemented the ’Transversely isotropic model’ with given model
parameters in the MATLAB and obtained results. The implementation of this model in MATLAB can be
seen in Appendix 3.

3.2 Consistency Test :

The consistency test was performed by using the MATLAB Subroutine ’Check Derivatives.m’. The
code was working fine as expected and we performed consistency test on two examples : ’Upsetting of
a block, imposed displacements’ and ’Compression of a slender beam, imposed displacements’. Both the
examples passed the consistency test giving very less relative errors of ’gradient’ and ’hessian’ with the
’Transversely isotropic material model’, thus verifying that our implementation is correct. Below Figures
(9) and (10) shows the plots of two examples which was taken for verifying the consistency test for the
new material model.

Figure 9: Upsetting of a block, imposed dis-
placements after passing consistency test .

Figure 10: Compression of a slender beam, im-
posed displacements after passing consistency
test

Quadratic Convergence:

To show that Newton’s Method(without line-search) converges quadratically, we have considered ex-
ample 0(upsetting of a block, dead load in tension) using material model ’Transversely isotropic material
model’ with model parameters: θ = π/6, µ = 1, c0 = 80, c1 = 5 and κ = 100 and the obtained error plot
is shown below in Figure (11).

As we can see from the error plot below, that the relative error converges quadratically in three
iterations. The relative error is of the order 10−12 and 10−8 in third iteration for quadratic convergence
which would be of order 10−8 and 10−6 respectively for linear convergence and also we can observe that
there is faster convergence(due to quadratic convergence) soon after 2nd iteration . This shows that when
the problem is solved with transversely istropoic model, Newton’s method converges quadratically.
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Figure 11: Error Plot showing Quadratic Convergence

3.3 Testing for different cases :

We have solved the example 0(A dead load applied on an elastic block in tension) with new material model
considering different θ values : θ = 0, θ = π/6, θ = π/4 and θ = π/2 with unit vector, Nfib = [cosθ, sinθ]T

and with model parameters: µ = 1, c0 = 80, c1 = 5 and κ = 100. The obtained plots for different θ values
are shown below.

For θ = 0 :

Figure 12: A dead load applied on an elastic block
in tension(3e0 N). Figure 13: Force v/s Displacement

Above Figures (12) and (13) shows the deformation of ’dead load applied on an elastic block’ submitted
to tensile load of 3e0 N and Force v/s displacement plot for θ = 0. We know that the unit vector,Nfib =
[cosθ, sinθ]T describes the orientation of the fibers in the reference configuration. Here since the value of
θ=0, we can observe that the fibers are aligned with the loading direction, material behaves like isotropic
and deformation is showing linear even for non-linear algorithm. We can also observe this behavior even
from Force v/s displacement plot, where nonlinear elasticity showing almost linear behavior after some
time.
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For θ = π/6 :

Figure 14: A dead load applied on an elastic block
in tension(3e0 N). Figure 15: Force v/s Displacement

Above Figures (14) and (15) shows the deformation of ’dead load applied on an elastic block’ submitted
to tensile load of 3e0 N and Force v/s displacement plot for θ = π/6. Since value of θ = π/6, fibers are not
aligned with the loading direction, which leads to form non-linear deformation for the given tensile loading
along the θ value..

For θ = π/4 :

Figure 16: A dead load applied on an elastic block
in tension(3e0 N). Figure 17: Force v/s Displacement

Above Figures (16) and (17) shows the deformation of ’dead load applied on an elastic block’ submitted
to tensile load of 3e0 N and Force v/s displacement plot for θ = π/4. Since value of θ = π/4,similar to
previous case here also fibers are not aligned with the loading direction, which leads to form non-linear
deformation for the given tensile loading along the θ value.
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For θ = π/2 :

Figure 18: A dead load applied on an elastic block
in tension(3e0 N). Figure 19: Force v/s Displacement

Above Figures (18) and (19) shows the deformation of ’dead load applied on an elastic block’ submitted
to tensile load of 3e0 N and Force v/s displacement plot for θ = π/2. Here since the value of θ = π/2, we
can observe that the fibers are perpendicular with the loading direction and material behaves like isotropic.
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Appendices

Appendix 1: MATLAB code subroutines for ’Kirchhoff Saint-Venant
material model’

In ’Kir stVen 1.m ’

function [W]=Kir stVen 1(C,lambda,mu,icode)
E=0.5*([C(1) C(3) 0;C(3) C(2) 0;0 0 0]-[1 0 0;0 1 0;0 0 0]);
W=0.5*lambda*(trace(E))ˆ2+mu*trace(Eˆ2);
end

In ’Kir stVen 2.m ’

function [W,S]=Kir stVen 2(C,lambda,mu,icode)
E=0.5*([C(1) C(3) 0;C(3) C(2) 0;0 0 0]-[1 0 0;0 1 0;0 0 0]);
W=0.5*lambda*(trace(E))ˆ2+mu*trace(Eˆ2);
X = [];
X=lambda*trace(E)*[1 0 0;0 1 0;0 0 0]+2*mu*E;
S=zeros(1,3);
S(1)=X(1,1);
S(2)=X(2,2);
S(3)=X(1,2);
end

In ’Kir stVen 2.m ’

function [W,S,CC]=Kir stVen 3(C,lambda,mu,icode)
E=0.5*([C(1) C(3) 0;C(3) C(2) 0;0 0 0]-[1 0 0;0 1 0;0 0 0]);
W=0.5*lambda*(trace(E))ˆ2+mu*trace(Eˆ2);
X = [];
CC=zeros(3);
X=lambda*trace(E)*[1 0 0;0 1 0;0 0 0]+2*mu*E;
S=zeros(1,3);
S(1)=X(1,1);
S(2)=X(2,2);
S(3)=X(1,2);

CC(1,1)=lambda+2*mu;
CC(1,2)=lambda;
CC(1,3)=0;
CC(2,2)=lambda+2*mu;
CC(2,3)=0;
CC(3,3)=2*mu;
CC(2,1)=CC(1,2);
CC(3,1)=CC(1,3);
CC(3,2)=CC(2,3);

end

In ’preprocessing.m ’

case 2
mod1.potential = 2; % 2 is Kirchkoff Saint Venant
mod1.mu=1;
mod1.lambda=100;
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otherwise
error('Material not implemented')

end

Appendix 2: MATLAB code modified subroutines for ’Newton-Raphson
with LineSearch’

In ’Equilibrate.m ’

case 1, %Newton-Raphson Linesearch
iter=0;
err x=100;
err f=100;
[Ener,grad E,Hess E] = Ener short(x short,3);
while (iter<=options.n iter max)& ...
( (err x>options.tol x) | ...
(err f>options.tol f))
iter=iter+1;
dx = -Hess E\grad E;

if grad E'*dx < 0 %%%% LINE SEARCH
p=dx;

else
p=-dx;

end
t = 1;
opts=optimset('TolX',options.TolX,'MaxIter',options.n iter max LS);
t = fminbnd(@(t) Ener 1D(t,x short,p),0,2,opts);
x short=x short+t*p;
[Ener,grad E,Hess E] = Ener short(x short,3);
err x=norm(dx)/norm(x short);
err f=norm(grad E);
err plot=[err plot err x];
err plot1=[err plot1 err f];

end

Appendix 3: MATLAB code subroutines for ’Transversely isotropic ma-
terial model’

Here we have implemented material model in single function transv isotr.m instead of using 3 func-
tions transv isotr 1.m,transv isotr 2.m and transv isotr 3.m

In ’transv isotr.m ’

function [W,S,CC]=transv isotr(C,c0,c1,kappa,mu,N fib)

J = sqrt(C(1)*C(2)-C(3)ˆ2) ;
I4 = N fib'*[C(1) C(3); C(3) C(2)]*N fib ;
C inv=[C(2) C(1) -C(3)]/Jˆ2;

W1 = 1/2*mu*(C(1)+C(2)-2) ;
W2 = -mu*log(J) ;
W3 = kappa*1/4*(Jˆ2-1-2*log(J)) ;
W4 = c0*(exp((c1*sqrt(I4)-1)ˆ4)-1);
W = W1+W2+W3+W4 ;

Nf Nft = [N fib(1)ˆ2 ; N fib(2)ˆ2 ; N fib(1)*N fib(2)] ;

S1 = mu*[1 1 0] ;
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S2 = -mu*C inv ;
S3 = kappa/2*(Jˆ2-1)*C inv ;
S4 = 4*c0*exp(c1*(sqrt(I4)-1)ˆ4)*c1*(sqrt(I4)-1)ˆ3 /sqrt(I4)*Nf Nft' ;
S = S1+S2+S3+S4 ;

Cinv = [C(2) -C(3); -C(3) C(1)]/Jˆ2 ;
for i=1:2

for j=1:2
DCinv(i,j) = 1/2*(Cinv(i,j)*Cinv(i,j) + Cinv(i,j)*Cinv(i,j)) ;

end
end
DCinv(1,3) = 1/2*(Cinv(1,1)*Cinv(1,2) + Cinv(1,2)*Cinv(1,1)) ;
DCinv(2,3) = 1/2*(Cinv(2,1)*Cinv(2,2) + Cinv(2,2)*Cinv(2,1)) ;
DCinv(3,3) = 1/2*(Cinv(1,1)*Cinv(2,2) + Cinv(1,2)*Cinv(2,1)) ;
DCinv(3,1) = DCinv(1,3) ;
DCinv(3,2) = DCinv(2,3) ;

DCinv = -DCinv ;

CC2 = -2*mu*DCinv ;
CC3 = 2*kappa/2*(Jˆ2-1)*DCinv + 2*kappa/2*Jˆ2*(C inv'*C inv) ;
m1 = 8*c0*exp(c1*(sqrt(I4)-1)ˆ4)*c1ˆ2*(sqrt(I4)-1)ˆ6 /I4 ; %diff of exponential
m2 = 6*c0*exp(c1*(sqrt(I4)-1)ˆ4)*c1*(sqrt(I4)-1)ˆ2 /I4 ; % diff of cubic term
m3 = 2*c0*exp(c1*(sqrt(I4)-1)ˆ4)*c1*(sqrt(I4)-1)ˆ3 /(I4ˆ1.5) ; % diff of sq.root
CC4 = 2*(m1+m2-m3)*(Nf Nft*Nf Nft') ;
CC = CC2+CC3+CC4 ;

end

In ’preprocessing.m ’

case 2
mod1.potential = 2; % 2 is transversely isotropic model
mod1.mu=1.;
mod1.c0=80;
mod1.c1=5;
mod1.kappa=100;
theta=pi/6;
mod1.N fib=[cos(theta); sin(theta)];

otherwise
error('Material not implemented')

end
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