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INTRODUCTION  

This report handles the topic of continuum damage models applied in the context of solid mechanics. Such 

a model is implemented in order to mimic the material’s loss of stiffness. Such a phenomenon is due to the 

dislocation motion and other microscopic phenomenon that occur inside the material once it exceeds its 

elastic limit. Such model could be used in order to simulate such effects on a continuum scale. The model 

could either capture hardening or softening behavior; however, for the majority of practical applications, a 

softening behavior is predominate used. 

 

The report in hand focuses on implementing and assessing the correctness of damage models, namely the 

inviscid and viscous damage models, on a Gauss point level. Such models are developed through the 

modification of a supplied MATLAB code. As an initial step, the strains exerted on the material are inserted 

into the code through a loading path in the principal stress space that is pre-prescribed by the user. 

Depending on the implemented model and its parameters the results are then obtained. 

1- INVISCID MODEL 

The first section of this report handles the implementation and evaluation of the correctness of the inviscid 

damage model. In such a model, the effect of the viscosity is neglected thus eliminating the dependency of 

the results and behavior on the rate at which the loads are applied. Regarding the implementation of the 

model, several modifications were added to the provided code. As a first addition, different models for the 

elastic domain were applied: non-symmetric and tension only elastic domain models. The second addition 

is the implementation of the exponential hardening/softening law.  

1-1 Elastic domain model 

The implementation of the tension only elastic domain model is shown in Figure 1 (see Appendix 1-1 for 

the code). The main characteristics of such model could be observed in the result. The damage surface 

delimits the elastic region only in positive quadrants of the principal stresses (i.e. tension). Beyond such 

limits damage is expected to occur. However, no such limits exist in the negative quadrants (i.e. 

compression) of the principal stresses as the damage surface tends to infinity.  Thus, damage does not occur 

in the material when subjected to compressive stresses. 

 

Figure 1: Tension only elastic domain model 

The implementation of the tension only elastic domain model is shown in Figure 2 (see Appendix 1-1 for 

the code)Figure 1. The main characteristics of such model could be observed in the result. A ratio exists 

between the limits in the tension and compression sides of the damage surface. In the case of this 

𝜎𝑢 

𝜎𝑢 
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implementation the applied ratio is 3. Thus, the stress limit beyond which damage occurs is 3 times larger 

in compression than in tension. 

 

Figure 2: Non-symmetric elastic domain model 

1-2 Hardening law 

The second addition to the code is the implementation of an exponential hardening/softening law (see 

Appendix 1-2 for the code). In order to access the correctness of the implementation. The internal variable 

r is plotted against the hardening parameter q in Figure 3 for the case of a positive hardening parameter H. 

This plot was obtained by applying a uniaxial tensile stress. It could be seen that an exponential behavior 

is expressed. Hardening is initialized at a given slope H which decreases exponentially until a value of 

almost zero is reached at infinity. 

 
Figure 3: Internal variable (r) vs. hardening parameter (q) 

 

 

 

 

𝜎𝑢 

𝜎𝑢 
−3𝜎𝑢 

−3𝜎𝑢 
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1-3 Assessing the correctness of the implementation 

The material parameters used for all three cases are as follows: H = - 0.2, ν = 0.3 and E = 2000. 

1-3-1 First case: Uniaxial tension-compression-tension loading 

In the first case, uniaxial stress in exerted on the material. This is to be applied for the tension only and non-

symmetric elastic damage surfaces. A tensile phase is applied initially to the point where damage would 

occur. This is followed by a compressive phase until damage occurs again (damage condition only 

applicable for the non-symmetric case). Then this is followed by another tensile phase until damage is 

achieved once again. The values used for the stress are as follows: 

 ∆𝜎1
(1)

=  400; ∆𝜎1
(2)

=  −1200; ∆𝜎1
(3)

=  2000 and ∆𝜎1
(1,2,3)

= 0 

 

The result for the stress vs. the strain, in the direction of the applied stresses, for the symmetric model is 

plotted in Figure 4 as a reference for the analysis. The initial tensile phase in black is followed by a 

compressive phase in blue which is followed by another tensile phase in green (a similar pattern is carried 

out in the following two cases). It could be seen that al the phases reach a damaged state where a decreasing 

linear behavior is expressed (negative hardening parameter). It could be noted that both the black and blue 

phases reach the same stress levels as the model is symmetrical. It could be also noted that the due to the 

occurrence of damage, the damage surface has shrunken thus the slopes at which the elastic behavior occurs 

is different from original one. This entails that the material will not follow the same path for when in the 

elastic range once damage has occurred.  

 
Figure 4: Stress vs. strain for the symmetric damage surface 

Figure 5 further confirms that occurrence of damage in the three phases signaled by the increase of the 

internal parameter.  

 

Figure 5: internal variable (r) vs. time for the symmetric model 
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The tension only model is shown in Figure 6. It could be seen that the behavior of the initial tension phase 

in black is similar to the behavior that occurs in the symmetric model. However, it could be noted that the 

compressive phase in blue (overlaid by the green curve) exhibits a compressive behavior only without the 

occurrence of any damage.  

 

Figure 6: Stress vs. strain for the tension only damage surface 

Figure 7 further confirms that occurrence of damage in the tensile phases only signaled by the increase of 

the internal parameter where in the compressive phase no increase has occurred. 

 

Figure 7: internal variable (r) vs. time for the tension only model 

The non-symmetric model is shown in Figure 8. A ratio of 1.5 was used in order to ensure that damage 

occurs for all phases using the prescribed stresses. It could be seen that a similar behavior to the symmetric 

model occurs. However, the value for the onset of damage in the blue compressive phase is 1.5 times larger 

than the one in the symmetric model. This is due to the non-symmetry of the behavior of the material in 

tension compared to tension. 

 

Figure 8: Stress vs. strain for the non-symmetric damage surface 
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Figure 9Figure 5 further confirms that occurrence of damage in the three phases signaled by the increase of 

the internal parameter. However, the values are different from those obtained using the symmetric model 

due to the non-symmetry between tension and compression.  

 

Figure 9: internal variable (r) vs. time for the non-symmetric model 

1-3-2 Second case: Uniaxial tension - biaxial compression-tension loading 

In the second case, biaxial stress in exerted on the material. The model implementation is similar to the first 

case. The values used for the stress are as follows:  

∆𝜎1
(1)

= 500 , ∆𝜎1
(2)

= 0; ∆𝜎1
(2)

= ∆𝜎2
(2)

= −900; ∆𝜎1
(3)

=  ∆𝜎1
(3)

= 1800.  

The result for the stress vs. the strain, in the direction of the applied stresses, for the symmetric model is 

plotted in Figure 10 and Figure 11, for the 𝜎1 and 𝜎2 direction respectively, as a reference for the analysis. 

All three phases of the loading are subjected to damage as shown in Figure 12 which is signaled by the 

increase in the internal parameter r. It is worth nothing that the behavior in the 𝜎1direction is different from 

the 𝜎2 direction due to the nature of the prescribed stresses. The stresses in the 𝜎1 direction increase in the 

tension phases (black and green lines) while it decreases in the compressive phase (blue line). The same 

could be said for the 𝜎2 direction; however, in the initial tensile phase, the strain decreases at constant stress. 

This is due to the Poison’s effect in the material. Another expression of the Poisson’s effect is that the value 

of stress does not pass through the origin while in the compressive phase in the 𝜎1 direction.   

 

 

Figure 10: Stress vs. strain for the symmetric damage surface in the 𝝈𝟏 direction 
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Figure 11: Stress vs. strain for the symmetric damage surface in the 𝝈𝟐direction 

 

Figure 12: internal variable (r) vs. time for the symmetric model 

The result for the stress vs. the strain, in the direction of the applied stresses, for the tension only model is 

plotted in Figure 13 and Figure 14, for the 𝜎1 and 𝜎2 direction respectively. It could be seen that the behavior 

of the tensile phases in the 𝜎1 direction (black and green curves) is similar to the behavior that occurs in the 

symmetric model. However, it could be noted that the compressive phase (blue curve overlaid by the green 

curve) exhibits solely a compressive behavior without any damage. The initial tensile phase in the 𝜎2 

direction exhibits a reduction in strain at constant stress due to the effect of the Poisson’s ratio. 

 

Figure 13: Stress vs. strain for the tension only damage surface in the 𝝈𝟏 direction 
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Figure 14: Stress vs. strain for the tension only damage surface in the 𝝈𝟐 direction 

The result for the stress vs. the strain, in the direction of the applied stresses, for the non-symmetric model 

is plotted in Figure 15 and Figure 16, for the 𝜎1 and 𝜎2 direction respectively. A similar setup was used as 

in case 1. It could be seen that a similar behavior to the symmetric model occurs. However, the value for 

the onset of damage in the blue compressive phase is 1.5 times larger than the one in the symmetric model. 

This is due to the non-symmetry of the behavior of the material in tension compared to tension. Again, the 

initial tensile phase in the 𝜎2 direction exhibits a reduction in strain at constant stress due to the effect of 

the Poisson’s ratio. 

 

Figure 15: Stress vs. strain for the non-symmetric damage surface in the 𝝈𝟏direction 

 

Figure 16: Stress vs. strain for the non-symmetric damage surface in the 𝝈𝟐 direction 

1-3-3 Third case: Biaxial tension-compression-tension loading 

In the third case, uniaxial stress is exerted on the material followed by a biaxial stress. The model 

implementation is similar to the first case. The values used for the stress are as follows:  

∆𝜎1
(1)

=  ∆𝜎2
(1)

= 400; ∆𝜎1
(2)

= ∆𝜎2
(2)

= −1200; ∆𝜎1
(3)

= ∆𝜎2
(3)

= 2000.  
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The result for the stress vs. the strain in the 𝜎1direction for the symmetric model is plotted in Figure 17 as 

a reference for the analysis. The results for 𝜎1 and 𝜎2 are identical due to the linear nature of the applied 

stresses. It could be observed that the behavior tis similar to the one obtained in case 1. However, the effect 

of softening is more pronounced in case 2. This is shown through Figure 18 where case 2 follows a curve 

with smaller value compared to case 1. This is due to the fact that the material is stretched in both axes 

hence increasing the amount of energy it is subjected to. The loading/unloading curve passes through the 

origin as the deformation equal in both directions. This general observation is carried out to the tension 

only and the non-symmetric models.  

 
Figure 17: Stress vs. strain for the symmetric damage surface 

 

Figure 18: Hardening parameter(q) vs. time for the symmetric model (case 1 and case 3) 

The tension only model is shown in Figure 19Figure 6. The results are similar to the ones obtained in case 

1. The behavior of the initial tension phase in black is similar for the tension only and the symmetric 

model. And the compressive phase in blue (overlaid by the green curve) is not subjected to any damage.  

 

 
Figure 19: Stress vs. strain for the tension only damage surface 

Case 1 

Case 2 
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The non-symmetric model is shown in Figure 20. A ratio of 1.5 was used in order to ensure that damage 

occurs for all phases using the prescribed stresses. The results are similar to the ones obtained in case 1. A 

similar behavior to the symmetric model occurs. However, the value for the onset of damage in the blue 

compressive phase is 1.5 times larger than the one in the symmetric model. 

 
Figure 20: Stress vs. strain for the non-symmetric damage surface 
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2- VISCOUS (RATE DEPENDENT) MODEL 

The second section of this report handles the implementation and evaluation of the correctness of the 

viscous damage model. In such a model, the effect of the viscosity is taken into account thus the results 

depend on the rate at which the loads are applied. Regarding the implementation of the model., only linear 

hardening law was implemented applied in the context of a symmetric elastic damage surface. Due to the 

time dependency of the problem in hand, a time integration scheme must be employed namely the alpha-

method. The modifications to provided MATLAB code are shown in Appendix 2.  

2-1 Assessing the correctness of the implementation 

2-2-1 Variation of the viscosity parameter η 

In order to assess the correctness of the implementation, several testes were conducted. The first one being 

the modification of the viscosity parameter η in order to observe its effect on the stress/strain curve. A 

uniaxial tension only load was applied in order to ease the visualization. The material parameters are as 

follows: H = - 0.1, α = 1, ν = 0.3 and E = 2000. Alpha is set to 1 in order to recover the inviscid case when 

η tends to zero. The values used for η are as follows: 1, 0.8, 0.4 and 0. The result for the effect of this change 

on the stress strain curve is shown in Figure 21. This confirms that different behaviors for the stress/strain 

relation is obtained based of the value of the viscosity. In the present case of a softening regime, it could be 

observed that an increase in ν results in a steeper decrease of the stress for the same value of strain.  

 

Figure 21: Stress vs. strain curves for η = 1, 0.8, 0.4 and 0 

It could be observed that when α is set to 1 and η is set to zero, the inviscid case (Figure 22) is recovered. 

 

Figure 22: Stress strain curve for the same input parameters for the inviscid model 

Increase in η  
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The time dependency of the results could be further illustrated using the evolution of stress with respect 

to time. It could be seen from Figure 23 that the inviscid case exhibits a linear behavior while the viscous 

case is nonlinear. Furthermore, the decrease in stress with respect to time is much steeper in the viscous 

case further justifying the results shown in Figure 21. 

 

Figure 23: Stress vs. time for η = 0 and 1 

2-2-2 Variation of the strain rate  

The second parameter to be analyzed is the strain rate . Its effect is to be observe its effect on the 

stress/strain curve. The input parameters are as follows: H = - 0.1, ν = 0.5, α = 0.5 and E = 2000. Th variation 

in strain rate is achieved by varying the total time giving it the following values: 5, 10, 15 and 20. This 

results in the decrease of the stain rate. The results are shown in Figure 24. It could be noted that the decrease 

in strain rate has a diminishing effect on the behavior of the stress/strain curve. At very low strain rate the 

stress/strain behavior of the inviscid model is recovered.  

 

Figure 24: Stress vs. strain curve for different strain rates 

2-2-3 Variation of the time integration parameter α 

The third parameter to be analyzed is the time integration parameter α. Its effect is to be observe its effect 

on the stress/strain curve. This parameter affects the time integration scheme where a value of 0 employs 

an explicit scheme, a value of 0.5 employs a Crank-Nicolson scheme and a value of 1 employs an implicit 

η = 0 

η = 1 

Decrease in strain 

rate 
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scheme. A uniaxial tension only load was applied in order to ease the visualization. The material parameters 

are as follows: H = - 0.1, ν = 0.5 and E = 2000. The results for the different values of α are shown in Figure 

25. It could be observed that the value of α has a great effect on the obtained solution. This is due to the 

nature of the integration scheme itself. Where the explicit method is unstable beyond a certain threshold. 

The implicit method is unconditionally stable however its is not consistent i.e. the convergence to the correct 

solution is not assured. The Crank-Nicolson method is also unconditionally stable; however, it provides a 

quadratic scheme in time thus providing higher accuracy and convergence compared to the implicit method. 

All the scheme would tend to the same solution if a sufficiently fine discretization (in a finite element sense) 

is applied.     

 

Figure 25: Stress vs. strain for α = 0, 0.5 and 1 

2-2 Tangent and algorithmic constitutive operators 𝑪𝟏𝟏 

In this section, the tangent and algorithmic constitutive operators are discussed. In a gauss point level, 

there is no difference in the implementation of either operators; however, the difference is more 

pronounced in a finite elements scheme. The constitutive operator specifies the relation between stress 

and strain. The constitutive algorithmic operator is computed when an incremental scheme for calculating 

the strains and stresses is used. The increment of stress is obtained based on the increment of strain. On 

the other hand, the tangent constitutive operator is used to compute the total stress from the total strain. 

This gives rise to different performance concerning the stability and the convergence of the solution. In 

general, the algorithmic tangent operator is easier to implement and provides a more robust method to 

obtain the solution.  

In the case of the model in hand, the behavior of the  𝑪𝟏𝟏 component of the algorithmic/tangent operator 

in time is to be analyzed for different values of the time integration parameter α. The results are shown in 

Figure 26. It could be observed that an increase in the value of α results in the steeper decrease of the value 

of the 𝑪𝟏𝟏 component in the damaged region while the value remains constant in the elastic region. 

Increase in α 
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Figure 26: Constitutive algorithmic/tangent tensor vs. time for α = 0, 0.5 and 1 

 

 

 

  

Increase in α 
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APPENDIX 
 

Appendix 1-1 
 

MATLAB code for the tension only elastic damage surface (modification to Mdelos_de_dano1) 

elseif (MDtype==2)  %* Only tension  

     

        sigm_p = [ mcau(sigm(1)) mcau(sigm(2)) mcau(sigm(3)) mcau(sigm(4)) ]; 

        rtrial = sqrt( sigm_p * eps ); 

 
MATLAB code for the non-symmetric elastic damage surface (modification to Mdelos_de_dano1) 

elseif (MDtype==3)  %*Non-symmetric 

     

        thet = ( mcau(sigm(1))+ mcau(sigm(2)) + mcau(sigm(4)) )/( 

abs(sigm(1))+ abs(sigm(2)) + abs(sigm(4)) ) ; 

        z = thet + (1-thet)/n ;  

        rtrial= z * sqrt(eps_n1*ce*eps_n1')  ; 

 

Appendix 1-2 
 

MATLAB code for exponential hardening (modification to rmap_dano1) 

    else 

        %  Exponential  %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        qinf = r0 + abs(r0-zero_q); 

        A = (H * r0) / ( qinf - r0 ); 

        q_n1 = qinf - (qinf-q_n)*exp(A*(1-(rtrial/r_n))); 

        % q_n + ( (delta_r*A*(qinf-r0) ) / (r0) ) * exp(A*(1-(rtrial/r0))) ; 

 

Appendix 2-1 
 

MATLAB modification for viscous effects (modification to function calls) 

function [sigma_n1,hvar_n1,aux_var] = rmap_dano1 

(eps_n1,hvar_n,Eprop,ce,MDtype,n,strain,delta_t,eta) 

 

function [rtrial] = Modelos_de_dano1 (MDtype,ce,eps_n1,n,Eprop,strain) 

 

function 

[sigma_v,vartoplot,LABELPLOT,TIMEVECTOR]=damage_main(Eprop,ntype,istep,strain

,MDtype,n,TimeTotal,eta) 
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MATLAB modification for viscous effects (modification to rmap_dano1) 

if(rtrial > r_n) 

    %*   Loading 

  

    fload=1; 

    delta_r=rtrial-r_n; 

    if Eprop(6) == 0 

        r_n1 = rtrial  ; 

    else 

        r_n1 = ( (eta-delta_t*(1-alpha))/(eta+alpha*delta_t) ) * r_n + 

(delta_t/(eta+alpha*delta_t)) * rtrial;  %%%%%%%%%%%%%%%%% 

    end 

 

Appendix 2-2 
 

MATLAB modifications to implement the C tangent (modification to rmap_dano1) 

% Compute C alg 

    if Eprop(6) == 0 

        c_alg_n1 = (1.d0-dano_n1)*ce ; 

    else 

        c_alg_n1 = (1.d0-dano_n1)*ce + (alpha*delta_t/(eta+alpha*delta_t)) * 

(1/rtrial) * ((H*r_n1-q_n1)/(r_n1)^2) * kron(sigm_n1_bar,sigm_n1_bar');  

%%%%%%%%%%%%%%%%% 

    end 

 

Modification to damage_main 

 

        vartoplot{i}(4) = c_alg_n1 (1,1); %  algorithmic constitutive 

operators (Calg) 

 

MATLAB modification for viscous effects (modification to function calls) 

function [sigma_n1,hvar_n1,aux_var,c_alg_n1] = rmap_dano1 

(eps_n1,hvar_n,Eprop,ce,MDtype,n,strain,delta_t,eta) 

 

LABELPLOT = {'hardening variable (q)','internal variable (r)','damage 

variable (d)','algorithmic constitutive operators (Calg)'}; 

 

 

 

 

 

 


